

Topline

7331A Garden Grove Blvd, Garden Grove, CA 92841
Tel. 1-800-776-9888 Fax 1-714-891-0321
e-mail info@topline.tv
www.TopLine.tv
© 1998 TopLine. All Rights Reserved

Table of Contents

Definition of Dummy 3
SMD Lead Styles 4
Throughhole Lead Styles 5
Measurements 6
Conversion Rules 6
Popular Dimensions 7
Pitch 8
Component Packaging 9
Tape Material 10
Reels 11
Tape Dimensions 12
Tape Direction 13
Chip Components 14
Inch vs. Metric Codes 15
MELF 16
Rectangular \& Molded Components 17
Chip Resistors 18
Chip Capacitors 19
SOT 20
DPAK 20
Quiz \#1 21
PLCC 24
SOIC 25
SOJ 26
SSOP, QSOP and TSSOP 27
TSOP 28
QFP 29
LQFP and TQFP 30
BQFP 31
BGA 32
Flip Chips 34
Chip Scale Packages 35
Dual Inline Package 36
Quiz \#2 37
LCC 40
Flat Pack 41
TO Packages 42
DO Package 44
Leaded Resistors 45
Popular Throughhole for Military 46
Popular Mil Spec Components 47
SIP 48
Trays 49
Tubes 51
CT Reel 52
Tape \& Reel for Throughhole Components 54
Coplanarity 55
Daisy Chain 56
Quiz \# 357
Practice Kits 60
PC Board Standards 61
PC Board Finishing 63
Solder Mask 64
Fiducial Marks 66
Global Fiducials 67

Definition of Dummy

Dummy Components are low-cost mechanical packages which handle, place and solder just like electrically functional parts.

Applications using dummy components:

a. simulation of assembly process
b. pick and place machine demonstrations
c. acceptance testing of machinery
d. employee training
e. rework practice
f. trade shows
g. assembly of prototypes
h. Thermal testing
i. destructive testing
j. soldering machines
k. props and artwork
l. education
m. evaluation

SMD Lead Styles

TYPE	DRAWING	COMPONENTS Gull-wing
J-lead		SOIC QFP TSOP
Ball		PLCC SOJ
Metalized		
Terminations		BGA Chip Scale Flip Chip (Bump)

Throughhole Lead Styles

Measurements

Mils and millimeters are often used interchangeably.
$1 \mathrm{mil}=1 / 1000 \mathrm{inch}(.001 ")$
$1 \mathrm{~mm}=.0393 \mathrm{inch}$
$1 \mathrm{inch}=25.4 \mathrm{~mm}$

Conversion Rules

* To convert millimeters into inches, multiply millimeters by .0393
* To convert inches into millimeters, divide inches by .0393
* To convert mils into inches, multiply mils by 1000
* To convert mils into millimeters, divide mils by 39.3

Popular Dimensions

Exact Measuremient			MILS* Rounded	Component Type
InCHES	MILS	MILLIMETER		
. ${ }^{\prime \prime}$	200mils	5.08 mm	200mils	Throughhole
.1"	100mils	2.54 mm	100mils	DIP \& Throughhole
.05"	50mils	1.27 mm	50mils	SOIC, PLCC
	39.3mils	1.00 mm	40mils	
	31.5 mils	0.8 mm	30mils	
	25.6 mils	0.65 mm	25mils	QFP
	25.0 mils	0.636 mm	25mils	TSOP
	19.7 mils	0.5 mm	20mils	SSOP
	15.7 mils	0.4 mm	15mils	
	11.8 mils	0.3 mm	12mils	

*Caution: Most SMD components are built to the metric (mm) standard.
Engineers sometimes mistakenly express dimensions by rounding mils. It is more acute to use 0.65 mm instead of 25 mils and 0.5 mm in place of 20 mils .

Pitch

Lead pitch is always measured from center to center of the leads.
Pitch is never considered the air gap between the leads.

Component Packaging

The purpose of packaging is to protect the component from damage during transport and to facilitate automated handling during board assembly.
Trass

Tape Material

Carrier Tape is made of either paper or plastic.
Paper tape has punched windows.
Plastic tape has embossed pockets.

Here are some advantages and disadvantages between paper and plastic tape:

Material	Advantages	Disadvantages		
Paper	$\begin{array}{l}\text { Costs less for Chip Caps and } \\ \text { Resistors }\end{array}$	Subject to moisture in humid areas		
Might cause dust in machine			$\}$	Plastic
:---				
Pockets can be shaped to fit and protect components Saves trees				
Not biodegradable				
Costs more				

Reels

Reels are made of either paper (cardboard) or plastic.
Plastic Reels are often used for 13 " size.

Standard Reel Diameters*

Tape Dimensions

Standard (W) Tape Widths	Popular Pitch (P) *	
		Pm 8 mm 8 mm
		4 mm (for 0402 for $0603 \sim 1210$ components)
12 mm		4 mm or 8 mm
16 mm		8 mm or 12 mm
24 mm		$12 \mathrm{~mm}, 16 \mathrm{~mm}$ or 24 mm
32 mm		$12 \mathrm{~mm}, 16 \mathrm{~mm}$ or 24 mm
44 mm		$24 \mathrm{~mm}, 32 \mathrm{~mm}$ or 40 mm

*other pitches available depending on component dimensions.

Tape Direction

Leader \& Trailer

Chip Components

The size of chip components (ceramic capacitors and resistors) are defined by a 4-digit size code which approximates its footprint. Thickness is not relevant in the size code.

Example:

 (INCH)

Example:
(Metric)

Inch vs. Metric Codes

In the USA and most parts of Europe, chip size codes are defined in Inches. In Japan, and some places in the orient, chip size codes are defined in millimeters.

Size Code		Approximate Size	
INCH	Metric	Inch	Metric
0402	1005	. 04 " x .02 "	$1.0 \times 0.5 \mathrm{~mm}$
0603	1608	. 06 " x 03 "	$1.6 \times 0.8 \mathrm{~mm}$
0805	2012	. 08 " x $0.05^{\prime \prime}$	$2.0 \times 1.2 \mathrm{~mm}$
1206	3216	. 12 " x $06{ }^{\prime \prime}$	$3.2 \times 1.6 \mathrm{~mm}$
1210	3225	. 12 " x 10 "	$3.2 \times 2.5 \mathrm{~mm}$
1812	4532	. 18 " x .12 "	$4.5 \times 3.2 \mathrm{~mm}$

MELF (CYLINDRICAL)

Melf components are cylindrical.
Cylindrical components are not very popular and have a tendency to roll on the board during the assembly process.

Size Definitions		
Name	Inch code	$\underline{\text { Approximate Metric (D x L) }}$
MELF	-	$2.5 \times 5.0 \mathrm{~mm}$
mini-MELF	1206	$1.6 \times 3.2 \mathrm{~mm}$
micro-MELF	0805	$1.1 \times 2.2 \mathrm{~mm}$

Molded Components

Tantalum capacitors, inductors and some diodes (also called rectifiers) are built in rectangular, epoxy molded cases.

Tantalums \& Inductors

Code	EIA		Footprint
		3216	
$3.2 \times 1.6 \mathrm{~mm}$			
B		3528	
C		$303 \times 2.8 \mathrm{~mm}$	
D	7343		$6.0 \times 3.2 \mathrm{~mm}$
		$7.3 \times 4.3 \mathrm{~mm}$	

Rectifiers

Chip Resistors

Chip resistors are the lowest cost dummy components available. They are usually packaged on paper. However, some customers prefer bulk feeder cassettes for high speed chip shooter machines.

The footprint dimensions are specified by a 4-digit size code.

Size Code Inch	Size Code Metric	Standard 7" Reel Qty.	Standard 10"~13" Reel Qty.
0402	1005	10,000 pcs.	50,000 pcs.
0603	1608	5,000 pcs.	10,000 pcs.
0805	2012	5,000 pcs.	10,000 pcs.
1206	3216	5,000 pcs.	10,000 pcs.

Zero Ohm Jumper

To perform continuity testing after assembly, use zero ohm resistors (sometimes called Jumpers).

The terminal to terminal resistance is 0 Ohms (completely shorted).

Chip Capacitors

Ceramic chip capacitors are relatively low cost. Sizes are similar to chip resistors. Available on both plastic and paper carrier tape.

Stze Code* Inch	Size Code* Metric	$\begin{gathered} \text { Standard } \\ \text { 7" Reel Qty. } \end{gathered}$	Tape Material
0402	1005	10,000	paper
0603	1608	4,000	paper
0805	2012	3,000~5,000	paper or plastic
1206	3216	3,000~4,000	paper or plastic

SOT

Diodes, transistors and some simple Integrated circuits are often packaged in molded cases with a SOT nomenclature. The SOT23 is the most popular case. A miniature version, known as the SOT323 is gaining popularity.
Some SOT devices are called out by a "TO" size according to JEDEC standards.

DPAK

DPAK is a used for high power applications.

D2PAK

DPAK
D3PAK

Dummy Class 101

Pop Quiz \#1 for pages 1-20

Your Name \qquad Date \qquad

Match the answer on the right to the question on the left.
\qquad 1. Gull Wing Lead
___ 2. Solder Balls
\qquad 3. J-lead
4. DIP
5. 50 mils
6. Pitch
7. 0805
8. MELF
9. 1 mil
10. 1206

Convert Dimensions below:
Write answer here
11. . 2 inch \qquad mm
12. 25.6 mils \qquad mm
13. $\quad 19.7 \mathrm{mils}$ \qquad mm
14. 100 mils \qquad mm
15. 1 mm \qquad Inch
wric anormex.
A. Cylindrical
B. Throughhole
C. $1 / 1000$ inch
D. Chip Size
E. QFP
F. . 12 " x .06 "
G. PLCC
H. $\quad 1.27 \mathrm{~mm}$
I. BGA
J. Lead Space

Interpret the following chip component size codes:

16. A-case Tantalum
17. 3528
18. 0805
19. 7343
20. 0402
21. C-case Tantalum
22. 3216
23. mini-MELF

Answer True or False.

___ 24. SOT devices are usually resistors.
___ 25. 0402 chip resistors come standard on 10,000pcs 7 " reels.
___ 26. 1608 size is the same as 0603 .
___ 27. Zero Ohm jumpers are capacitors.
___ 28. C-bend leads are modified J-leads.
___ 29. A-case tantalums are 0603 size.
\qquad 30. Metric codes are never used in the USA.
\qquad 31. Leader tape feeds into the machine.
\qquad 32. 2 mm pitch is standard for 0402 chips.
\qquad 33. Paper tape is used mostly for chip components.
\qquad 34. Reels are standard in 5 inch and 12 inch diameters.
\qquad 35. Trays are used for storing components.

Circle the term which doesn't belong:

36.	Gull-wing	J-lead	Tray
37.	Resistor	Diode	Rectifier
38.	Pitch	Lead Space	J-lead
39.	SMD	Axial	Radial
40.	Footprint	1206	DPAK

PLCC

The PLCC (Plastic Leaded Chip Carrier) is the first SMD package to use the J-lead on 4-sides.

The pitch is $50 \mathrm{mils}(1.27 \mathrm{~mm})$. PLCC devices are usually soldered directly to the PC board; however, they can also be mounted in a socket for replacement in the field.

PLCC Sockets

PLCC Socket

SOIC

Small Outline Integrated Circuits come with two lead styles: Gull wing and J-lead.

Refer to SOJ page for details on J-lead version.
The Gull-wing version comes in body widths 150 mils to 450 mils (4.0 mm to 11 mm) with $50 \mathrm{mil}(1.27 \mathrm{~mm})$ lead pitch.

Standard packaging is tube or tape and reel.
TopLine assigns different part numbers to distinguish the various body widths.

Part Series	Body Width		Notes
	Mils	Metric	
SO	150	4.0 mm	Standard for 8-16 lead
*SOP	208	5.3 mm	Popular in Japan only
SOM	220	5.6 mm	Standard for resistor network
SOL	300	7.6 mm	Popular for 20-28 leads
SOW	330	8.4 mm	
SOX	400	10.0 mm	
SOY	450	11.1 mm	
*Note: In Japan "SOP" often means "SOIC" in general			

SOJ

The J-lead version Small Outline Integrated Circuit has 50 mil (1.27 mm) lead pitch.
The J-lead version may be soldered directly to the PC board or mounted in socket for removal in the field.

Some SOJ devices have leads missing from the center. In such cases, the part number indicates a dual lead count. For example the SOLJ20/26 means
26 lead body size with 20 leads (3 leads are missing on each side).
Standard packaging is Tube or Tape and Reel.
TopLine assigns different part numbers to distinguish the various body widths.

Part Series	Body Width	
	MiLS	Metric
SOLJ	300	7.6 mm
SOXJ	400	10 mm

SSOP, QSOP and TSSOP

Gull wing ICs are also available in "shrink" packages with 0.5 mm (25 mil) lead pitch.

A few versions have 0.8 mm lead pitch.
The body length of the SSOP "shrink" version is approximately half the size of the standard 50mil pitch SOIC.

Standard packaging is Tube or Tape and Reel.
TopLine assigns different part numbers to distinguish the various body.

Part Series	Body Widit		Lead Counts	Notes
	MILS	Metric		
SSOP	208	5.3 mm	8-30	1.75 mm height
TSSOP	173	4.4 mm	8-28	1.0 mm height
*QSOP	150	3.8 mm	16-28	1.6 mm height
*Note: Lead pitch on QSOP is built to 25.0mil standard.				

The Thin Small Outline Package comes in Type 1 and Type 2.
Type 1 have leads extending from the narrow ends of the body.
Type 2 have the leads protruding from the wide side of the body.

The measurements for Type 1 include the leads (tip to tip).
The measurements for Type 2 excludes the leads (body only).
Maximum seated height of Type 1 is 1.0 mm and Type 2 is 1.2 mm .
Sometimes, the center leads are missing.
In such cases, the part number indicates a dual lead count. For example TSOP40/44 means 44 lead body size with 40 leads (2 leads missing from each side).

Standard packaging is trays; however, tape and reel is gaining popularity.

TSOP Type	Popular Lead Pitch		
	.5 mm	.8 mm	1.27 mm
Type 1	X		
Type 2		X	X

QFP
 Quad Flat Pack

Quad Flat Packs have gull-wing leads on four sides. The body material is molded epoxy known as "plastic".

Ceramic body Quad Flat Packs are also available on special order (CQFP and CERQUADS).

Most QFPs are square; however, they are also available in a $14 \mathrm{~mm} \times 20 \mathrm{~mm}$ rectangular package.

TopLine uses the QFP designation; however, the industry may call them MQFP (Metric Quad Flat Pack).

Standard thickness of QFP is 2.0 mm to 3.8 mm . For thinner versions, refer to TQFP and LQFP pages.

The same body size and lead count is usually available with 2 or 3 different lead length footprint adders.

The footprint adder twice the actual lead length. For example a 3.9 mm adder has 1.95 mm leads on each body side.

For example, a 28 mm square body with a 3.9 mm adder actually measures 31.9 mm from lead tip-to-tip.

Standard packaging is in trays, however, tape and reel is becoming more popular.

Standard Body	Popular Lead Pitch					Lead Count Typical
	1.0mm	0.8mm	0.65 Mm	0.5mm	0.4MM	
10mm SQuare		X	X			44-52
14MM SQUARE	X	X	X			44-80
$14 \times 20 \mathrm{~mm}$	X	X	X			64-100
28MM SQUARE		X	X	X	X	120-256
32MM SQUARE			X	X		184-240
40MM SQUARE				X		304

Quad Flat Packs are also available in "Thin" versions.
The TQFP is 1.0 mm thick and the LQFP is 1.4 mm thick.
Some Japanese manufacturers use SQFP (Shrink Quad Flat Packs) for thin parts.
TQFP and LQFP are available in a wide range of body sizes and lead pitch.
The footprint adder for TQFP and LQFP is usually 2.0 mm (1.0 mm leads on each side.)
In most dummy applications, TQFP and LQFP may be used interchangeably.

	Lead Pitch Avallable					Lead Count Popular Body Size
	0.8 mm	0.65 mm	0.5 mm	0.4 mm	0.3 mm	Range

BQFP

The BQFP is a version of Quad Flat Pack with corner bumpers to protect the leads during transport and handling.

The BQFP is no longer popular.

The lead pitch of BQFP is a true 25.0 mils instead of the metric 0.65 mm .
Because the lead pitch is not built to metric standards, it is subject to errors in circuit board design.

The bumpered corners allow BQFPs to be packaged in tubes, however, trays are more popular. Also available on tape and reel.

BGA

The leads of Ball Grid Arrays are actually spherical solder balls.
BGAs offer several advantages over other high lead count devices such as QFP.

Advantages

1. Solder ball leads are not as fragile as QFP gull wing leads.
2. During soldering, BGA leads are self aligning.
3. BGAs have higher lead count than QFP.

Disadvantages

1. Requires an x-ray machine for inspection of leads after soldering.

BGAs are available with lead pitch of $1.0 \mathrm{~mm}, 1.27 \mathrm{~mm}$ and 1.5 mm .
Ball Grid Arrays are also available in a variety of case materials.

Series		Type	
*BGA	Plastic	Most popular, common usage	
CBGA	Ceramic	High temperature applications	
TBGA	Tape	High power dissipation	
*Sometimes called PBGA			

BGA (CONT'D)

The material of the solder ball is usually eutectic $63 / 37 \mathrm{SnPb}$ for assembly onto normal epoxy FR4 laminate PC Boards.

However, high temperature 10/90 balls are available for assembly onto ceramic substrates.

TopLine supplies a wide assortment mechanical dummy BGA with Daisy Chain Patterns for continuity testing after assembly.

BGAs are packaged in trays and tape and reel.
BGA ball patterns come in a variety of configurations.

Full Grid

StagGer

ososes osisesisise
osesesesesosesoses
Peripheral

Thermal Via

Flip Chips

Flip Chips are die sized components with the bumps attached to the die.
The bumps come in 3-popular materials: Eutectic $63 / 37 \mathrm{SnPb}$ solder, gold and nickel.

Eutectic bumps are preferred when mounting the flip chip to FR4 laminate circuit boards.

Nickel is preferred for soldering to high temperature ceramic substrates (circuit boards).

Often the bumps are spherical, however, square and rectangular bumps are available.
Flip Chips are quite small since there is no extra packaging covering the die.
The bump pitch is very small and is measured in microns ($\mu \mathrm{m}$) rather than millimeters.
$1000(\mu \mathrm{~m})$ microns $=1$ millimeter.
There is no industry standard die size or pitch for flip chips.
Each design is specific to customer applications.
TopLine offers mechanical (dummy) flip chips from open tooled customer design with daisy chains.

Chip Scale Packages

Chip Scale Packages (CSP) are a cross between BGAs and Flip Chips.
By definition, the maximum footprint dimension of a Chip Scale Package is no greater than 1.2 x the die itself.

Different kinds of Chip Scale Packages are being developed.
The most popular (at the time of this writing) is the Tessera $\mu \mathrm{BGA}^{\circledR}$ available in 46 and 188 bumps.

Other manufacturers such as Citizen and FCT have developed unique Chip Scale designs.

CATEGORY	TyPE	MANUFACTURER
Flex Circuit Interposer	TAB/Flip Chip	GE, IZM, KME, Mitsubishi, NEC, Rohm, Sony, Tessera and licensees
	Wire Bonding	Amkor/Anam, Fujitsu, Hiatchi, LSI Logic, Mitsubishi, Sharp TI Japan, Toshiba
	FlipChip	Citizen Watch, Fujitsu, Matsushita, Motorola, Oki Electric, Sony
	Wire Bonding	Amkor/Anam, Cypress, Fujitsu, LSI Logic, Motorola, National Semi., NEC, Rohm, Sony, Toshiba
Lead Frame	Wire Bonding	Amkor/Anam, Fujitsu, Hitachi Cable, LG Semicon, Matsushita, TI Japan, Toshiba
	Redisdribution	ChipScale, EPIC, FCT, NEC, Sandia Nat'l. Labs
	Substrate	ChipScale and licensees, ShellCase, Tessera, 3-D Plus

Dual Inline Package

DIP ICs are throughhole devices introduced in the 1960's.
The lead pitch is .1 " (100 mils or 2.54 mm).
The body width is typically 300 mils and 600 mils (however, 400 mils and 900 mils is available).

The most popular DIP package is 8,14 and 16 leads.
The body is molded epoxy, refered to as "plastic."
Ceramic body CERDIP packages are available for high temperature and military applications.

Standard packaging is in tubes.

Dummy Class 101

Pop Quiz \#2 for pages 24-36

Your Name \qquad Date \qquad

Answer True or False:

___1. BQFP is built to metric standard.
2. PLCC can be inserted into sockets.
3. SOL has J-leads.
4. BGA has solder bumps
5. TSSOP and TSOP have gull-wing, 1 ea.
___6. QFP are always square.
7. TQFP and LQFP are generally interchanged.
\qquad 8. SOJCs generally come packed in trays.
9. QFPs generally come packed in tubes.
10. TSOP Type 1 measurement includes 1 ea.

Fill in the blank

The lead pitch for PLCC is \qquad mils.

The body width for SOL is \qquad mils.
The lead style for SOLJ is \qquad .
The maximum seated height for TSOP Type 1 is \qquad mm.

A 10mm sq. QFP with 2.6 mm footprint adder has \qquad mm lead length per side.

Match the answer on the right with the question on the left:

\qquad 16. 100 mil lead pitch
___17. Eutectic
\qquad 18. 1.0 mm thick
19. High temp solder
20. Packaging for TSOP
21. Die with solder bumps
22. CBGA
23. $450 \mu \mathrm{~m}$
24. Self aligning
25. True 25 mil pitch
26. CSP
A. Ceramic
B. Flip Chip
C. $1.2 \times \mathrm{max}$ die size
D. BQFP
E. $63 / 37 \mathrm{SnPb}$
F. .45 mm
G. BGA
H. DIP
I. Trays
J. TQFP
K. $10 / 90 \mathrm{SnPb}$

Convert the following dimensions:

27. $\quad 1.27 \mathrm{~mm}$ \qquad
28. 300 mils \qquad inches
29. $\quad 25.6$ mils
30. 1250 mm
31. .5 mm
32. . 4 mm

Circle the one that doesn't belong:

33.	PLCC	SOM	SOLJ	SOXJ
34.	TQFP	BQFP	TSOP	SOXJ
35.	Type 1	TSOP	QFP	1.0mm high
36.	SOLJ 20/26M		TSOP 40/44E13A30	SOL20M
37.	Tray	Bumpers	Tape \& reel	Tubes
38.	SOL	SSOP	TSSOP	QFP
39.	CSP	BGA	BQFP	Flip Chip
40.	CERDIP	DIP	CERQUAD	CBGA

LCC Leadless Chip Carrier

LCC package was developed in the ' 70 's and still enjoy limited usage today, particularly for defense, aerospace and high temperature applications.

LCC packages are made of ceramic and are quite rugged.
There are no "leads" to bend or damage.
LCC packages use metalized castellations on four sides of the body which are solderable to the PC board.

The castellations are usually gold or solder coated.
The pitch of LCC is either 40 mils (1.0 mm) or 50 mils (1.27 mm).

There are well over 100 different lead count, pitch, and body size combinations; however, the most popular LCCs have 50 mil pitch with lead count and body size that match standard PLCC plastic packages.

LCC dummy packages are available with and without lids. Lids hermetically seal the die inside of the LCC cavity. Lids are usually gold plated, but ceramic lids are also available.

Standard packaging is tubes, trays or simply bulk packed in bags.

Flat Pack

Flat Packs were developed in the late ' 60 's and still enjoy limited usage today, mainly in military and aerospace applications.

As the name suggests, flat packs have unformed, flat leads which must be protected in a carrier prior to assembly.

Flat Packs are either ceramic or plastic with either gold plated or solder coated leads.
Depending on the cavity location and case construction, the leads extend either from the middle, bottom or top side of the body.

The lead pitch of flat packs are usually 50 mils (1.27 mm).
During construction, the leads are built on lead frames which hold the leads straight.
After excising (cutting) the Flat Pack must be mounted into an individual plastic carrier to prevent lead damage.

Immediately prior to the assembly, the Flat Pack goes into a lead forming tool (or machine) which bends the leads into a Gull-wing shape and the excess is cut off.

Flat Packs are used for integrated circuits and resistor networks.
Flat Packs are available with and without lids.

TO Packages
 Transistor Outline

Transistor packages are designed by a TO number which is assigned by JEDEC, a joint industry standards committee.

Leaded (throughhole) TO packages were developed in the early ' 60 's and ' 70 's.
Leaded transistor packages are either metal or plastic.
For example, the TO3, TO5, TO18, TO39 and TO99 are metal.
TO92, TO126 and TO220 are plastic.
SMD transistor packages are only plastic, such as the TO236AB (same as SOT-23) and TO252 (same as DPAK).

Early designed Integrated Circuits were often placed into multiple lead, metal TO packages such as the TO99 with 8 leads, the TO75 with 6 leads and the TO100 with 10 leads.

Multiple lead TO packages are usually mounted in a plastic carrier to protect the leads prior to assembly.

The TO5 and TO99 are still used in military applications.
The TO39 is easily substituted for the TO5, with the only difference being the length of the leads.

TO39 have shorter leads that TO5 packages. Since the excess lead is always cut off, either TO39 or TO5 will do the same job.

The TO92 is a low cost, leaded plastic package for commercial use. It is available either bulk for assembly by hand or tape and reel for machine assembly.

Standard bulk packed TO92 have unformed leads with .05 " (1.27 mm) pitch between each lead.

TO Packages
 (Cont'd)

Most TO92 on tape and reel have the leads formed (prior to taping) with $.1 "(2.54 \mathrm{~mm})$ pitch between the leads.

Some TO packages such as TO3 and TO220 are available in tubes for machine assembly.

The standard TO220 has 3 leads, however a 4-lead and 5-lead version is available.

Metal Case

Plastic Case

DO Package Diode Outline

Diodes and rectifiers are designated by a DO number which is assigned by JEDEC, a joint industry standards committee.

Leaded (throughhole) DO packages were developed in the ' 60 's and ' 70 's.
Diodes and rectifiers are fundamentally the same.
By industry convention, diodes are considered low power devices rated below 1.0 AMP and rectifiers are high powered devices rated 1.0 AMP and up.

Popular, low power diodes such as 1 N 4148 are hermetically sealed in a cylindrical glass case with axial leads, designated DO35.

Popular rectifiers such as the 1 N 4001 series and higher lowered zener diodes are assembled in the DO41 molded plastic case.

Some surface mount diodes/rectifiers have DO designation such as DO215AA (same as SMBG) and DO214AA (same as SMBJ).

Leaded DO packages are available bulk packed for assembly by hand or on tape and reel for machine assembly (and lead forming).

Leaded Resistors

Throughhole resistors have axial leads and are grouped by into size categories by their power rating

For example, all $1 / 4$ Watt resistors are the same size, regardless of part number.
The industry refers to " $1 / 4$ Watt size" as .1 " x .25 " (.1 " diameter by .25 " long).
"1/8 Watt size" means .062 " x 145 ".
The old carbon composition resistor such as the military RC07 and RCR07 is out of production even though it is still used today for solder practice.

Leaded resistors are available bulk packed for assembly by hand or tape and reel for machine assembly.

Popular Throughhole for Military

The military and aerospace industries still use component packages which were designed 20 or even 30 years ago.

This is not surprising when you consider the amount of time some government projects take to get approved.

Listed below are popular throughhole component packages which are still used by the military for solder practice and certification of technicians.

Popular Mil Spec Components

TopLine Part \#	Description	Drawing
$\begin{aligned} & \text { TO5 } \\ & \text { TO39 } \end{aligned}$	Transistor	
TO99	Integrated Circuit	
CS2	Tantalum Capacitor CS13/CSR13	θ
RC07 RCR07	Resistor	())))
CK05 CKR05 CK06 CKR06	Ceramic Capacitor	
CERDIP	Ceramic Dual Inline Package	
Flat Pack	Flat Pack	
LCC	Leadless Ceramic Chip Carrier	

SIP packages are used for resistor networks and some Integrated Circuits.
The lead pitch is .1 " (100 mils or 2.54 mm).
SIP components may be molded or conformally coated, also called dipped (not to confused with DIP dual inline).

The conformally coated case offers the lowest cost and is the most popular for commercial use.

Pin counts from 4 to 12 are available; however, 6, 8 and 10-pins are the most popular.
Bulk packaging may be used for hand assembly. Tubes, tape and reel or ammo is used for machine assembly.

In the case of tape and reel (or ammo packed) only 3 leads are attached to the tape which must be excised during assembly by the insertion machine.

Trays

TopLine supplies a limited range of trays. Trays are used to protect components during transportation and assembly. Trays are usually grouped into two categories: bakable and non-bakable.

Bakable trays may be subjected to maximum temperatures of $150^{\circ} \mathrm{C}$ and are suitable in situations where the parts must be baked prior to assembly.

Component manufacturers recommend that TSOP and BGA components be baked at $125^{\circ} \mathrm{C}$ for 24 hours prior to assembly to remove any moisture trapped inside the plastic case. Baking eliminates the "popcorn" effect of cracking.

Also, components may be "burned in" prior to assembly to weed out potentially defective components.

Unless specifically requested by the customer, TopLine will supply non-bakable trays.

Most JEDEC standard trays are $136 \mathrm{~mm} \times 316 \mathrm{~mm}$ (about 5.375 " x $12.5 "$).
It is recommended that a cover tray (most trays are stackable and interlocking, so the cover tray is just a regular tray) always be placed on top of the stack of trays.

The stack must be bound tightly with heavy-duty rubber bands or velcro straps.
As extra precaution, the stack of trays should be vacuum sealed in moisture-barrier ESD bags.

Even exercising the above precautionary steps, it is possible for trays to separate just enough during rough handling to allow the components to shift off their protective pedestals inside the tray cavities, causing damage to the leads.

Trays
 (CONT'D)

Here is a list of trays offered by TopLine:

Component	TopLine Tray Designation
QFP	QTRAY
LQFP	LQTRAY
TQFP	TQTRAY
TSOP Type 1	TTRAY
TSOP Type 2	T2TRAY
BGA	BGATRAY
PLCC	PLCCTRAY

TopLine's tray part numbering system includes the size of the component and the cavity matrix.

Example:

QTRAY

Tubes

Tubes (sometimes called sticks or magazines) hold PLCC, SOIC, DIP, SIP and LCC components.

Tubes are approximately 20 " long (500 mm), but may range from 18 " to 23 "
Rubber-end plugs or plastic push-in pins prevent the components from falling out of the tube during transit.

During assembly, the components are gravity-fed by positioning the tube vertically or at a steep incline.

The machine often vibrates the tube to assure the components fall out at even speed.
The interior of the tube is designed to conform to the shape of the component without causing lead damage.

It is quite common to see the same component type (example: PLCC20) be packaged in various tube quantities (example: $46,47,48,49$ or 50), based on the actual length of the tube and the type of end plug used.

CT Reel
 Empty Carrier Tape

TopLine offers a wide selection of empty carrier tape on 7 -inch and 13-inch reels for applications not requiring filled components.

CT Reels have a sealed cover tape.

CT reels are a low cost solution to perform "dry" machine runs without the need to pick up and remove components from the carrier tape.

Dummy Component Ordering Information

Tape lnfo		Tape Material	Typical Cavity Size	Part Number	Nbr Cavities
Width	Рітсн				
7" Reel Diameter					
8 mm	2 mm	Paper	0402 Chip	CTREEL7x8mm-P2P	5000
8 mm	2 mm	Plastic	0402 Chip	CTREEL7x8mm-P2E	4000
8 mm	4 mm	Paper	0805 Chip	CTREEL7x8mm-P4P	5000
8 mm	4 mm	Plastic	0805 Chip	CTREEL7x8mm-P4E	4000
12 mm	4 mm	Plastic	2010 Chip, MELF, SM1	CTREEL7x12mm-P4	4000
12 mm	8 mm	Plastic	1812 Chip, Tant-C, SO8	CTREEL7x12mm-P8	1000
16 mm	4 mm	Plastic	8x0805 R-Array	CTREEL7x16mm-P4	4000
16 mm	8mm	Plastic	SO14, SO16	CTREEL7x16mm-P8	500
13" Reel Diameter					
8 mm	2 mm	Paper	0402 Chip	CTREEL13x8mm-P2P	10,000
8 mm	2 mm	Plastic	0402 Chip	CTREEL13x8mm-P2E	10,000
8 mm	4 mm	Paper	0805 Chip	CTREEL13x8mm-P4P	10,000
8 mm	4 mm	Plastic	0805 Chip	CTREEL13x8mm-P4E	10,000
12 mm	4 mm	Plastic	2010 Chip, MELF, SM1	CTREEL13x12mm-P4	10,000
12 mm	8 mm	Plastic	1812 Chip, Tant-C, SO8	CTREEL13x12mm-P8	2500
16 mm	4 mm	Plastic	8x0805 R-Array	CTREEL13x16mm-P4	2500
16 mm	8 mm	Plastic	SO14, SO16	CTREEL13x16mm-P8	2500
16 mm	12 mm	Plastic	SOL16	CTREEL13x16mm-P16	1000
24mm	4 mm	Plastic	R-Network	CTREEL13x24mm-P4	1000
24 mm	8 mm	Plastic	Ø4mm Al-Cap, Crystal	CTREEL13x24mm-P8	1000
24 mm	12 mm	Plastic	SOM16, SOL20	CTREEL13x24mm-P12	1000
24 mm	16 mm	Plastic	PLCC28, PLCC32	CTREEL13x24mm-P16	500
24 mm	24 mm	Plastic	D3PAK	CTREEL13x24mm-P24	500
32mm	16 mm	Plastic	SOW32	CTREEL13x32mm-P16	500
32 mm	24 mm	Plastic	PLCC44	CTREEL13x32mm-P24	500
32 mm	32 mm	Plastic	BGA121, BGA169	CTREEL13x32mm-P32	250
44 mm	16 mm	Plastic	SOL40	CTREEL13x44mm-P16	250
44 mm	24 mm	Plastic	QFP	CTREEL13x44mm-P24	250
44 mm	32 mm	Plastic	PLCC68	CTREEL13x44mm-P32	250
44 mm	36 mm	Plastic	SOCKET PLCC68	CTREEL13x44mm-P40	250
56mm	40mm	Plastic	SOCKET PLCC84	CTREEL13x56mm-P40	100

Аmmo Pack
 Throughhole Components

Ammo is quite popular in Asia and in very similar to tape and reel, except the tape is fan folded in a box instead of rolled onto a reel.

Ammo packaging consumes considerably less volumetric space and weighs less than tape and reel.

Axial Components on tape and reel

FOR Throughhole COMPONENTS

Radial Components on tape and reel

Both axial and radial lead components may be packaged on tape and reel.

The reel is constructed with $14 \sim 15$ inch ($355 \sim 380 \mathrm{~mm}$) cardboard flanges mounted to a cardboard, hollow code, tubular hub. A metal insert holds the flanges to the hub.

The flanges may be circular or octagon shaped.

Axial lead components are mounted between two continuous strips of adhesive tape.

Radial lead components are mounted to a continuous cardboard strip and held in place by an adhesive tape.

The insertion machine will cut (excise) the leads from the tape and form the leads (if necessary) prior to assembly into holes on the PC board.

Coplanarity

Layman's description: Think of sitting on a wobbly stool or at a wobbly table which rocks because all the legs don't touch the floor at the same time. The amount of gap between the floor (PC board) and the leg (component lead) is called coplanarity.

Technical definition: a setting plane formed by the first 3-leads touching the surface. All other leads are measured from this plane.

To assure good solderability, the maximum coplanarity allowance must be as small as possible. For example, most QFP components have a maximum guaranteed coplanarity of 4 mils $(0.1 \mathrm{~mm})$. This means that no lead on the QFP will be more than 4 mils (0.1 mm) off the PCB (about the thickness of a single sheet of paper).

Daisy Chain

Daisy Chain Odd

Continuity testing requires dummy components to contain internal daisy-chain connections.

Daisy Chaining is also known as stitching.
For QFP, SOIC, PLCC, LCC and TSOP type components, the daisy-chain is wire-bounding of the leads inside of the component.

For BGA components, the daisy chain is usually made on the substrate.
The standard daisy chain pattern for non-BGA Integrated Circuits is "EVEN", designated by a DE suffix at the end of TopLine's part number (example PLCC68M-DE).

Daisy chain "ODD" is available on special order with part number suffix DO (example PLCC68M-DO).

There is no industry standard daisy chain pattern for BGA, Chip Scale and Flip Chip components.

TopLine has open tooled daisy chain patterns for BGA components which are fully described in the BGA Daisy Chain Pattern Book, now available on TopLine's website at http://www.toplinedummy.com/bgabooklet.pdf.

Dummy Class 101

Pop Quiz \#3 for pages 40-56

Your Name \qquad
\qquad

Match the answer on the right to the question on the left:

___ 1. LCC

___ 2. 1 amp rating
___ 3. Resistor
\qquad 4. T05
5. $1 / 4$ watt size
6. Coplanarity
7. DO215AA
G. Castellation
\qquad 8. Tray
H. Axial lead
\qquad 9. Straight leads
10. Resistor network
11. Daisy chain
K. Setting plane
\qquad 12. Ammo
L. Flat pack

Answer True or False:

\qquad 13. Special handling of LCC is required to prevent lead damage.
\qquad 14. Diodes are high powered rectifiers.
\qquad 15. T05 and T039 are similar.
\qquad 16. $\quad 1 / 4$ watt resistors are axial leaded.
\qquad 17. Lead pitch for SIP is usually $1 / 4$ inch.
\qquad 18. T099 is an 8-lead IC package.
\qquad 19. Most trays are stackable.
20. Flat packs are state of the art.
21. Coplanarity is unimportant.
22. TO92 is expensive.

Fill in the blanks:

Internal connections is known as \qquad .

Maximum coplanarity allowance for QFP is \qquad mils.

Two styles of taping for radial through hole components are \qquad and \qquad _. BGAs and TSOPs should be baked at $125^{\circ} \mathrm{C}$ for \qquad hours prior to assembly.

SIP resistor networks usually have \qquad inch lead pitch.

The ceramic version of the dual inline package is known as \qquad .

Do through hole packages usually have \qquad leads?

Castellations are found on this type of component \qquad .

Circle the one which doesn't belong:

31.	LCC	BGA	PLCC
32.	gold	solder coated	axial
33.	50 mils	0.5 inch	1.27 mm
34.	.1"	1000 mils	2.54 mm
35.	TQFP	TSOP	TBGA
36.	Bulk packed	Resistors	QFP
37.	Ammo	Tape \& reel	Pitch
38.	JEDEC	Standards	Tape \& Reel
39.	Popcorn effect	TSOP Baking	Daisy chain
40.	T05	T092	T099
		58	

Dummy Class 101

Answer Keys
for Quizes \#1-3

Quiz \#1 pages 1-20

1. E
2. I
3. G
4. B
5. H
6. J
7. D
8. A
9. C
10. F
11. 5.08 mm or 5 mm
12. 0.65 mm
13. 0.5 mm
14. 2.54 mm or 2.5 mm
15. . 0393 inch
16. $3.2 \times 1.6 \mathrm{~mm}$
17. B
18. . 08 " x .05 "
19. D
20. 1005
21. 6032
22. 1206
23. 1206
24. False
25. True
26. True
27. False
28. True
29. False
30. False
31. True
32. True
33. True
34. False
35. True
36. Tray
37. Diode
38. J-lead
39. SMD
40. DPAK

Quiz \#2 pages 24-36

1. False
2. True
3. False
4. True
5. True
6. False
7. True
8. False
9. False
10. True
11. 50
12. 300
13. J
14. 1.0
15. 1.3
16. H
17. E
18. J
19. K
20. I
21. B
22. A
23. F
24. G
25. D
26. C
27. 50
28. . 3
29. . 65
30. 1.25
31. 19.7
32. 15.7
33. SOM
34. SOXJ
35. QFP
36. SOL20M
37. Bumpers
38. SOL
39. BQFP
40. DIP

Quiz \#2 pages 24-36

1. G
2. I
3. H
4. J
5. C
6. K
7. B
8. E
9. L
10. D
11. A
12. F
13. False
14. False
15. True
16. True
17. False
18. True
19. True
20. False
21. False
22. False
23. Daisy Chain
24. 4
25. ammo/tape \& reel
26. 24
27. . 1
28. DIP
29. axial
30. LCC
31. BGA
32. axial
33. 0.5 inch
34. $\quad 1000 \mathrm{mils}$
35. TBGA
36. QFP
37. Pitch
38. Tape \& Reel
39. Daisy Chain
40. TO92

Topline

7331A Garden Grove Blvd, Garden Grove, CA 92841
Tel. 1-800-776-9888 Fax 1-714-891-0321
e-mail info@topline.tv
www.TopLine.tv
© 1998 TopLine. All Rights Reserved

